

Keysight programmable step attenuators offer fast, precise signal-level control up to 50 GHz , with switching time of less than 20 ms .
Unmatched attenuation repeatability of less than 0.03 dB up to 5 million cycles per section ensures low measurement uncertainty and reduces calibration cycles when installed into test systems.

Automatic GPIB/USB/LAN drive control is achieved with the 11713B/C attenuator/switch driver.

Programmable step attenuators

- High reliability and exceptional repeatability reduce downtime
- Excellent RF specifications optimize test system measurement capability
- Broad portfolio of attenuation and connector options provide configuration flexibility

Keysight | RF \& Microwave Programmable Step Attenuators - Product Fact Sheet
Product specifications
Programmable step attenuator

Model number	Frequency (GHz)	Attenuation range (dB)	Attenuation step (dB)	Insertion loss (dB) @ 0 dB	Maximum SWR	Maximum input average power (W)	Maximum input peak power (W)	Operating life (in million cycles/section)	Repeatability
8494G	DC to 4	0 to 11	1	0.96	1.50	1	100	5	$\begin{aligned} & \pm 0.03 \mathrm{~dB} \text { max } \\ & \text { (} 5 \text { million cycles per section) } \end{aligned}$
8495G	DC to 4	0 to 70	10	0.68	1.35	1	100	5	$\begin{aligned} & \pm 0.03 \mathrm{~dB} \text { max } \\ & \text { (5 million cycles per section) } \end{aligned}$
8496G	DC to 4	0 to 110	10	0.96	1.50	1	100	5	$\begin{aligned} & \pm 0.03 \mathrm{~dB} \text { max } \\ & \text { (5 million cycles per section) } \end{aligned}$
8494H	DC to 18	0 to 11	1	2.22	1.90	1	100	5	$\begin{aligned} & \pm 0.03 \mathrm{~dB} \text { max } \\ & \hline(5 \text { million cycles per section) } \\ & \hline \end{aligned}$
8495H	DC to 18	0 to 70	10	1.66	1.70	1	100	5	$\begin{aligned} & \pm 0.03 \mathrm{~dB} \text { max } \\ & \text { (5 million cycles per section) } \end{aligned}$
8496H	DC to 18	0 to 110	10	2.22	1.90	1	100	5	$\begin{aligned} & \pm 0.03 \mathrm{~dB} \text { max } \\ & \text { (5 million cycles per section) } \\ & \hline \end{aligned}$
8495K	DC to 26.5	0 to 70	10	3.95	2.20	1	100	5	$\begin{aligned} & \pm 0.03 \mathrm{~dB} \text { max to } 18 \mathrm{GHz}, \\ & \pm 0.05 \mathrm{~dB} \text { max to } 26.5 \mathrm{GHz} \\ & \text { (} 5 \text { million cycles per section) } \end{aligned}$
8497K	DC to 26.5	0 to 90	10	2.79	1.80	1	100	5	$\begin{aligned} & \pm 0.03 \mathrm{~dB} \text { max to } 18 \mathrm{GHz}, \\ & \pm 0.05 \mathrm{~dB} \text { max to } 26.5 \mathrm{GHz} \\ & \text { (} 5 \text { million cycles per section) } \end{aligned}$
84904K	DC to 26.5	0 to 11	1	1.86	2.00	1	50	5	$\begin{aligned} & \pm 0.03 \mathrm{~dB} \text { max } \\ & \text { (5 million cycles per section) } \\ & \hline \end{aligned}$
84906K	DC to 26.5	0 to 90	10	1.86	2.00	1	50	5	$\begin{aligned} & \pm 0.03 \mathrm{~dB} \text { max } \\ & \text { (5 million cycles per section) } \end{aligned}$
84907K	DC to 26.5	0 to 70	10	1.40	1.90	1	50	5	$\begin{aligned} & \pm 0.03 \mathrm{~dB} \text { max } \\ & (5 \text { million cycles per section) } \end{aligned}$
84904L	DC to 40	0 to 11	1	2.40	2.00	1	50	5	$\begin{aligned} & \pm 0.03 \mathrm{~dB} \text { max } \\ & \text { (5 million cycles per section) } \end{aligned}$
84906L	DC to 40	0 to 90	10	2.40	2.00	1	50	5	$\begin{aligned} & \pm 0.03 \mathrm{~dB} \text { max } \\ & \text { (5 million cycles per section) } \end{aligned}$
84907L	DC to 40	0 to 70	10	1.80	1.90	1	50	5	$\begin{aligned} & \pm 0.03 \mathrm{~dB} \text { max } \\ & \text { (} 5 \text { million cycles per section) } \end{aligned}$
84904M	DC to 50	0 to 11	1	3.00	3.00	1	50	5	$\pm 0.03 \mathrm{~dB} \mathrm{max}{ }^{1}$
84905M	DC to 50	0 to 60	10	2.60	2.60	1	50	5	$\pm 0.03 \mathrm{~dB}$ max ${ }^{1}$
84908M	DC to 50	0 to 65	5	3.00	3.00	1	50	5	$\pm 0.03 \mathrm{~dB} \mathrm{max}{ }^{1}$

1. Typical

RF connector options
849xG/H offers N (f) SMA (f) / APC-
8490xL offers $2.4 \mathrm{~mm}(\mathrm{f}), 2.92 \mathrm{~mm}(\mathrm{f}) / 2.4 \mathrm{~mm}(\mathrm{f} / \mathrm{m}) / 2.92 \mathrm{~mm}(\mathrm{f} / \mathrm{m})$

- 8490xM offers $2.4 \mathrm{~mm}(\mathrm{f} / \mathrm{m}) / 2.4 \mathrm{~mm}(\mathrm{f} / \mathrm{f})$
- $8490 \times \mathrm{K}$ offers 3.5 mm (f) / 3.5 mm (f / m)

Programmable step attenuator option
Keysight 8494/95/96/97 series ordering

Models	Option type	Option description
$8494 \mathrm{G} /$$8494 \mathrm{H} /$$8495 \mathrm{G} /$$8495 \mathrm{H} /$$8495 \mathrm{~K} /$$8496 \mathrm{G} /$$8496 \mathrm{H} /$8497 K	001	$N(f){ }^{\text {G, H }}$
	002	SMA (f) ${ }^{\text {G, H }}$
	004	$3.5 \mathrm{~mm}(\mathrm{f})^{2, \mathrm{~K}}$
	024	24 Vdc
	011	5 Vdc
	060	12-pin viking connector ${ }^{\text {G, H, K }}$
	016	16-inch ribbon cable with 14-pin DAP plug G, H, K
	UK6	Commercial calibration test data with certifications
Keysight 84904/905/906/907/908 series ordering example *		
$\begin{aligned} & \hline 84904 \mathrm{~K} / \\ & 84904 \mathrm{~L} / \\ & 84904 \mathrm{M} / \\ & 84905 \mathrm{M} / \\ & 84906 \mathrm{~K} / \\ & 84906 \mathrm{~L} / \\ & 84907 \mathrm{~K} / \\ & 84907 \mathrm{~L} / \\ & 84908 \mathrm{M} \end{aligned}$	024	24 Vdc
	011	5 Vdc
	012	6 Vdc
	104	$3.5 \mathrm{~mm}(\mathrm{f})$ drive cable end, $3.5 \mathrm{~mm}(\mathrm{~m})$ opposite end ${ }^{\mathrm{k}}$
	004	3.5 mm (f) both ends ${ }^{\text {k }}$
	006	2.92 mm (f) both ends ${ }^{\text {L }}$
	100	$2.4 \mathrm{~mm}(\mathrm{f})$ drive cable end, $2.4 \mathrm{~mm}(\mathrm{~m})$ opposite end ${ }^{\mathrm{L}, \mathrm{M}}$
	106	2.92 mm (f) drive cable end, $2.92 \mathrm{~mm}(\mathrm{~m})$ opposite end
	101	2.4 mm (f) both ends ${ }^{\text {L.M }}$
1. Each order must include RF connector option * Drive cable not included		
2. Available with $8495 / 97$ only		
G. G-models		
H. H-models		
K. K-models		
L. L-models		
L.	M -models	

