

Using a Passive Oscilloscope Probe with a Spectrum Analyzer

Date:05/23/2013

Solution: Spectrum Analyzers are typically used to measure radio frequency (RF) signals. The signals are usually delivered to the RF input of the analyzer with an antenna, magnetic probe, or using a cable with a matched impedance. This minimizes impedance mismatching which lowers reflected power and provides the cleanest measurement. This is not always an acceptable connection scheme. Especially in circuits that are highly susceptible to loading when attached to low impedance inputs, like those on most Spectrum Analyzers.

This application note covers using a passive probe, typically used with an oscilloscope, with a spectrum analyzer. We highlight some of the advantages and trade-offs with this technique as well.

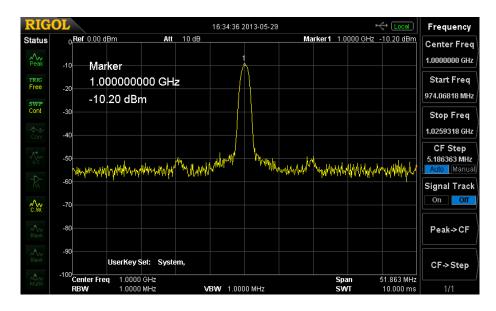
Most analyzers feature a 50 Ohm input impedance. In fact, many oscilloscopes with analog bandwidths above a few hundred MHz also feature a 50 Ohm impedance setting. This lower impedance enables better performance at higher frequencies but can significantly load a circuit with higher impedance.

In this application note, we will use an RF signal source to deliver a -10dBm signal at 1GHz (CW Sine Wave) to a spectrum analyzer, using a passive 1.5GHz oscilloscope probe.

Authorized Rigol Distributor:

Address

Instruments 4 Engineers Ltd Business & Innovation Centre Broadstone Mill, Broadstone Road Stockport SK5 7DL, United Kingdom


Contact

Tel: +44 (0) 161 871 7450 sales@instruments4engineers.com

www.instruments4engineers.com

Here is a screen capture of the signal directly connected to the input of the spectrum analyzer using coaxial cable and BNC adapters:

Note that the marker above shows the peak at 1GHz with an amplitude of -10dBm.

Now, we connect a 1.5GHz Passive Probe (Rigol RP6150 Passive probe) to the input of the spectrum analyzer. The RP6150 is designed to be a 10:1 probe when connected to 50 ohms.

Using a probe with an impedance greater than 50 ohms acts as a voltage divider for signals being delivered to the spectrum analyzer. This decreases the voltage to the input and effectively acts as an attenuator. It also has the advantage of lessening the circuit loading that can be caused by connecting the 50 ohm spectrum analyzer input directly to the circuit.

Address

Instruments 4 Engineers Ltd Business & Innovation Centre Broadstone Mill, Broadstone Road Stockport SK5 7DL, United Kingdom

Contact

Tel: +44 (0) 161 871 7450 sales@instruments4engineers.com

www.instruments4engineers.com

Here is the same signal but instead of a direct connection to the RF input, we are using an RP6150 probe to detect the signal.

RIGO						09:26:53	2013-05-30					Marker
tatus	0R	ef 0.00 d	Bm	Att	10 dB			Mai	rker 1	1.0000 GHz	-30.65 dBm	Select Mk
Peak	-10—	Mar	ker									123
TRIG Free	-20—	1.0	000000	00 GH	z							Normal
SWP	-30	-30	.65 dBr	n			1					
	-40						\cap					Delta
	-50											Delta Pai
	M,	profil daily	manhunter	wahatan	And the state of the	the physical section of the section	YNNW	Northhand	ra yaanal	ny when w	hydrawy gwyrdw	Ref Del
PA	-60											Span Pai
∧	-70											Span Cen
	-80											Off
	-90		UporKou	at Evet								Mkr Trace
	-100	enter Fre	UserKey S a 1.0000		anı,					Span	51.863 MHz	Auto
		BW	1.0000		V	BW 1.00	00 MHz			SWT	10.000 ms	1/2

Note that the marker now shows -30dBm for the amplitude. This is due to the probe attenuation factor.

Let's take a closer look at that probe. Recall that power is the square of the amplitude. Therefore, you can calculate the probe power ratio by simply squaring the probe attenuation factor.

Some common probe attenuation ratios can be found using *Table 1*.

Probe Impedance (Ohms)	Probe Attenuation Ratio*	Power Ratio	dB
50	1:1	1	0
500	10:1	100	20
1M	2000:1	4E+6	66

Table 1: Probe Impedance to dB *With 50 Ohm Input to Spectrum Analyzer

Address

Instruments 4 Engineers Ltd Business & Innovation Centre Broadstone Mill, Broadstone Road Stockport SK5 7DL, United Kingdom

Contact

Tel: +44 (0) 161 871 7450 sales@instruments4engineers.com

www.instruments4engineers.com

Now, we can easily calculate the expected measured power using the equation below:

Measured Power (dBm) = Signal Source Power (dBm) - Probe Attenuation ratio (dB)

So, if our Signal Source Power is -10dBm, and the probe attenuation ratio for our RP6150 Passive Probe is 20dB, we would expect to read -30dB on the spectrum analyzer as we see in the above screen capture.

For convenience, we can then use the spectrum analyzers internal reference setting to adjust for the attenuation of the probe.

Simply press AMPT and set the Ref Level to the probe attenuation ratio in dB. This is a scalar factor that will remove the additional attenuation from the displayed value and give the corrected power value.

RIG					16:34:36	2013-05-29					Frequency
Status	0 Ref 0.00 dE	9m	Att 1	0 dB			Mar	ker 1 1.	.0000 GHz	-10.20 dBm	Center Free
∕∕ w Peak	-10 Marl	(er				1					1.0000000 GH
TRIG Free		0000000	GHz								Start Freq
SWP		20 dBm									974.06818 MH
Cont	-30										Stop Freq
	-40										1.0259318 GH
	-50	statka – uku –		ut said	pharm	h.	M	. Davi	Laudua - A		CF Step 5.186363 MH
-D- PA	-60	nyahaharan dalama	awya	VIVIN	(, m	wilkelada	ad Mar Mar Jak	radh hadd y	a. Malalahra	Signal Trac
~~~~	-70										On Off
	-80										Peak->CF
	-90	UserKey Set:	System,								
	-100 Center Freq								an	51.863 MHz	CF->Step
	RBW	1.0000 GH2		VE	W 1.00	00 MHz			van MT	10.000 ms	1/1